Why do we use naked mole-rats?

Naked mole-rats live in large underground colonies of approximately 80 animals, which are dominated by a single breeding female, the queen; this social system is highly unusual in mammals but is similar to that commonly observed in bees and termites. Unlike queen bees and termites that use pheromones to control colony behaviour, a naked mole-rat queen uses aggression, being the physically dominant animal in a colony.

Over the last decade further physiological peculiarities of naked mole-rat physiology have come to light:

  • Extreme longevity – naked mole-rats live until 30 years of age, whereas the longevity of similarly sized mice is two to three years; moreover, naked mole-rats display sustained good health into old age and unlike most mammals do not display an increased incidence of death with ageing
  • Cancer resistance – naked mole-rats have an exceptional resistance to cancer
  • Insensitivity to acid as a noxious stimulus – naked mole-rats respond normally to mechanical and thermal stimuli, but fail to perceive acid as noxious
  • Hypoxia resistance – naked mole-rat brain tissue can withstand sustained periods of hypoxia (low oxygen levels) and even anoxia (no oxygen).

Learn more here: Meet the ugly naked guys

 

What do we study?

In 2014, scientists from the Department of Pharmacology established the University of Cambridge Naked Mole-Rat Initiative, which aims to bring together experts in different scientific areas with the overarching aim being to identify molecular explanations for the highly unusual physiology of this species. All of their work aims to leverage the extreme biology of this species to understand more about how our bodies work normally.

In 2020 a study by Dr Ewan St John Smith, a founding member of the initiative, discovered the secrets of naked mole-rat cancer resistance. Understanding how these remarkable animals are almost completely immune to cancer could improve our understanding of the early stages of the disease in people and lead to new ways to prevent or better treat it. See: Secrets of naked mole-rat cancer resistance unearthed.

Dr Smith was also part of an earlier study that demonstrated that naked mole-rats are highly resistant to hypoxia and anoxia, due to their cells being able to efficiently utilise fructose to power energy production during periods of low oxygen. This work enhances understanding of how nerve cells can function in the absence of oxygen, and might lead to work that uncovers novel treatments to prevent brain damage in stroke patients.

How do we care for the animals?

Dr Smith explains in this film, produced by Understanding Animal Research.